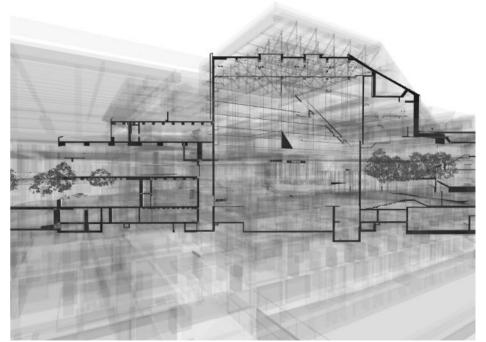
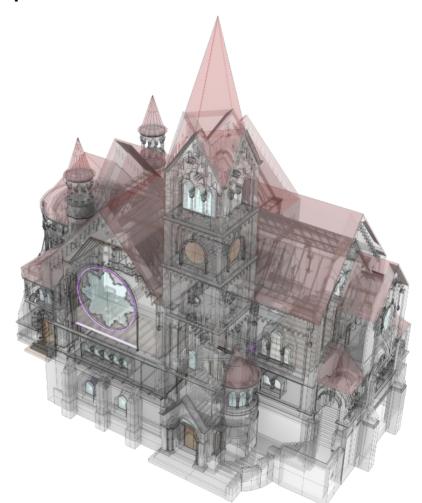
Freiformflächen für BIM-konforme Bestandsmodelle



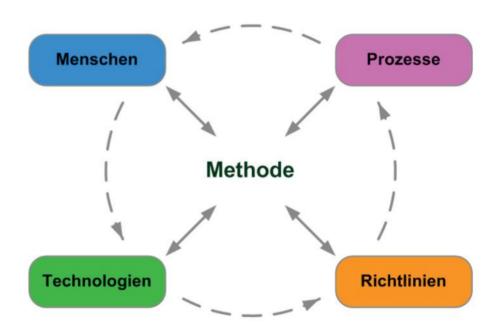
BauScan2023 - Innovative Erfassungs-, Mess- und Dokumentationsverfahren

09. & 10. November 2023 | MAGDEBURG

Welches Ziel verfolgt das Building Information Modeling?


- Digital vernetzte Planung auf Grundlage von 3D Modellen mit parametrischen und semantischen Informationen und Beziehungen
- Nutzung der Planungunsmodelle zur Mengenermittlung, Leistungsverzeichnissen, Ausschreibung und Vergabe
- Nutzung zur seriellen oder individuellen Vorfertigung von Bauteilen

Für welche Bauvorhaben ist BIM konzipiert? - NEUBAUTEN


Bei welchen Bauvorhaben kann es zu Schwierigkeiten kommen?

- Bestandsbauten im Hoch- und Tiefbau
- Verformte und schadhafte Bauwerke
- Sonderkonstruktionen, die sich nicht durch geometrische Primitive abbilden lassen

Welche Möglichkeiten der Zusammenarbeit für BIM?

- ZIEL: Vernetzung aller an der Planung und Ausführung beteiligten Architekten, Fachplaner und Firmen der ausführenden Gewerke
- UMSETZUNG: alle Beteiligten arbeiten am selben Datenmodell
- PROBLEM: proprietäre BIM Software nutzt unterschiedliche und noch miteinander kompatible Datenformate und BIM Server
- LÖSUNG: Open BIM auf Grundlage des Datenstandards IFC in Verbindung mit Open BIM Server

Grafik: BIM Leitfaden Deutschland

Welche Grundlagen gibt es zur Qualitätsbeschreibung von Planungsmodellen?

Vorhandene Richtlinien

- VDI 2552
 - LOD (LOG + LOI) 100 bis 500 in Korrespondenz zu den LPH nach HOAI
- BIM Leitfaden für Deutschland (ZukunftBAU)
 - Fertigstellungsgrad 100 bis 500
- USIBD Level of Accuracy (LOA) Specification Guide
 - LOA 10 bis 50 (DIN 18710)
- Scan3D Eigene Zuordnung vorhandener Richtlinien und Normen
 - Anwendung in den Baufachlichen Richtlinien Vermessung des Bundes
 - AK Verm Bund / AK₃ BIM DVW

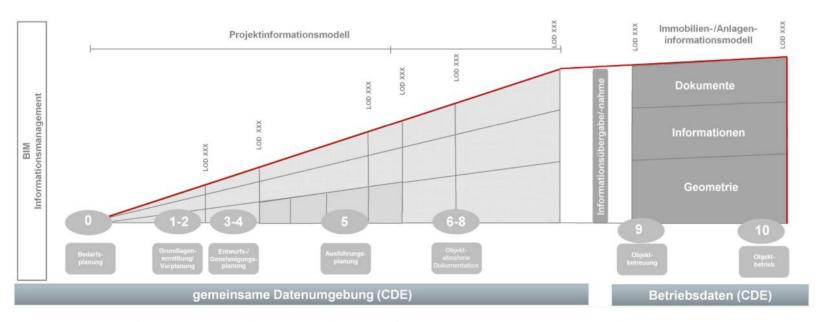
Tabelle 1 — Klassifizierung der Messgenauigkeit bei Lagevermessungen

Klasse	Standardabweich	ung $\sigma_{\!L}$ bei Lagevermessungen	Bemerkung
L1	50 mm	< σ _L	Sehr geringe Genauigkeit
L 2	15 mm	< σ _L ≤ 50 mm	Geringe Genauigkeit
L 3	5 mm	< σ _L ≤ 15 mm	Mittlere Genauigkeit
L4	1 mm	< σ _L ≤ 5 mm	Hohe Genauigkeit
L 5		$\sigma_L \leq 1 \text{mm}$	Sehr hohe Genauigkeit

Tabelle 2 - Klassifizierung der Messgenauigkeit bei Höhenvermessungen

Klasse	Standardabweichung $\sigma_{\!H}$ bei Höhenvermessungen		Bemerkung
Н1	20 mm <	σ_H	Sehr geringe Genauigkeit
H 2	5 mm <	σ _H ≤ 20 mm	Geringe Genauigkeit
Н3	2 mm <	$\sigma_H \leq 5 \text{mm}$	Mittlere Genauigkeit
H 4	0,5 mm <	σ _H ≤ 2 mm	Hohe Genauigkeit
H 5		σ _H ≤ 0,5 mm	Sehr hohe Genauigkeit

Level	Upper Range	Lower Range
LOA10	User defined	5cm *
LOA20	5cm *	15mm *
LOA30	15mm *	5mm *
LOA40	5mm *	1mm *
LOA50	1mm *	0 *

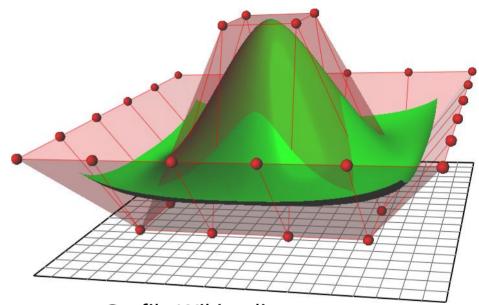

^{*}Specified at the 95 percent confidence level.

@

Quelle: Diverse Veröffentlichungen set 2006, DGPF Tagungsband 2011, aktuelle Fortführung für BIM (Kurzfassung)

Lassen sich diese Richtlinien auf Bestandsgebäude anwenden?

- JEIN
 - JA in Bezug auf die geometrische und semantische Detaillierung
 - NEIN in Bezug auf die geometrische Qualität / Genauigkeit



Grafik: VDI 2552 Blatt 1 - Building Information Modeling, Grundlagen, 2020

Wie lässt sich die Qualität von Bestandsmodellen erhöhen?

- Durch die Nutzung von Werkzeugen für Freiformen
- Allplan, ArchiCad, Revit, Vectorworks eingeschränkte Werkzeuge
- Problem: Sonderobjekte, eingeschränkter Datenaustausch zwischen unterschiedlichen Plattformen

KURVEN	Merkmale	Einschränkung
Spline	hohe Komplexität der Kurven	größere Fehler bei der Anpassung der Kurvengrade
B-Spline	Kurve mit Kontrollpunkten	freie Kurvengrad
Bezier	voll parametrische Kurve	geringere Präzision erreichbar

- Grafik: Wikipedia
- NURBS (Non-uniform rational B-Splines) – Freiformflächen aus Kurvennetzwerken
 - B-Splines zur Definition der Oberflächen – Kontrollpunkte können der Punktwolke präziser angenähert werden

Lassen sich aus Freiformflächen 3D Objekte für BIM erstellen?

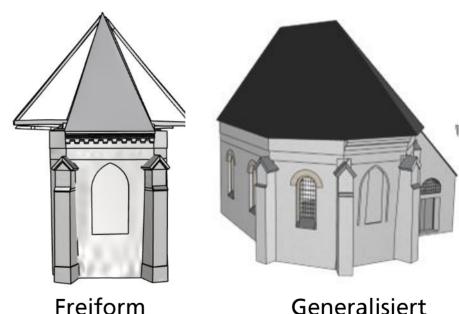
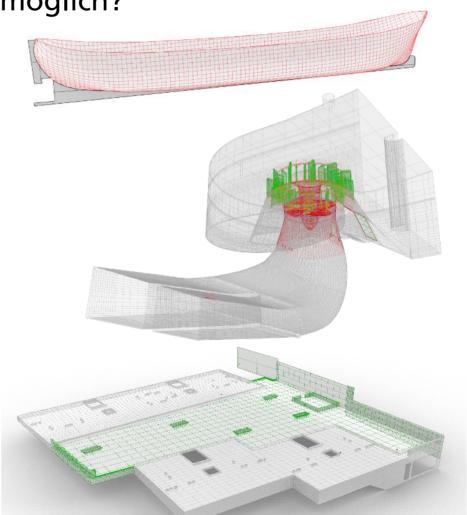
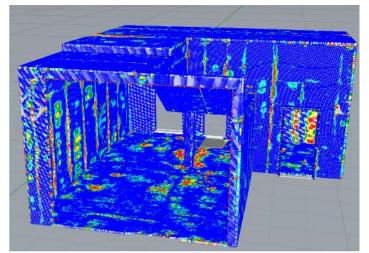
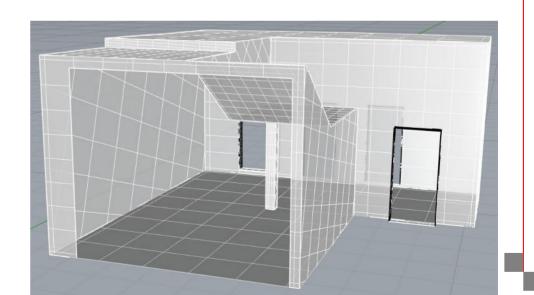

- Aufbau von Kurven durch die gefilterte Punktwolke
 - Aufbau eines Kurvennetzwerks zur Beschreibung der Geometrie
 - Erstellung eines Volumenkörpers aus einem geschlossenen Flächenverband
- IFC konforme Attribuierung der Architekturobjekte
 - Export: IFC ab Version 4.1,
 Verbesserungen ab 4.3

Bild 3: Links: Parametrische Rekonstruktion einer Kreuzblume von St. Matthias Berlin (Prof. Daniel Lordick) / Rechts: Punktwolke und Mesh (Scan3D GmbH)


Sind 3D Modelle mit Freiformflächen für BIM nutzbar?

- PROBLEM: proprietäre BIM CAD Software unterstützt kein NURBS
 - Zerlegung in Polygonnetze beim **Import**
 - Parametrische Attribute nicht mehr möglich
- LÖSUNG: Reduzierung der Bestandsmodelle auf die Geometrie
 - Export über IFC 4.3 / Import über IFC 4.3
 - Alternative für BIM-fähige Fachplanungssoftware STP


Welche Anwendungen sind aktuell möglich?


- Holzbauplanung
 - Holzrahmenbauweise
- Stahlbauplanung
 - Sonderkonstruktionen und Fassaden
- Denkmalpflege
 - Verformungsgetreue Bestandsmodelle
- Industrial BIM
 - Schiffbau
 - Wasserkraft
 - Maschinenbau

Welche Genauigkeiten sind erreichbar?

- Statistik von Punkttests:
 - Punkte insgesamt: 116782
 - Durchschnittsabstand o.ooo58
 - Mittelabstand o.ooo45
 - Standardabweichung o.ooo49
 - (Einheiten in m)

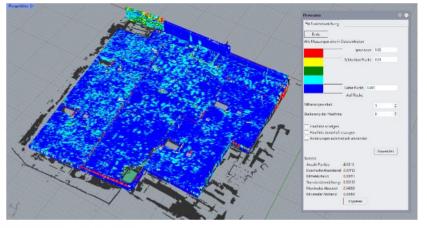
Welche Genauigkeiten sind erreichbar?

Bauteil A

Gesamtfehler

- Standardabweichung Punktwolke
 - +/- o,1 mm
- Standardabweichung 3D Modell
 - +/- o,5 mm
- Resultierender Gesamtfehler
 - < 1,0 mm
- Transformation in ein übergeordnetes Koordinatensystem
 - Abweichung zu den Festpunkten

Adjusted Translation Parameters of Stations


a_z sigma_t
01 0.0002
0.0002
01 0.0001
01 0.0001
00 0.0001
000 0.0001
0000 0.0001
0.0001
0.0001
01 0.0002
0.0001
0.0002
000 0.0001
000 0.0001
000 0.0001
0000 0.0001

Standardabweichung 0.000125

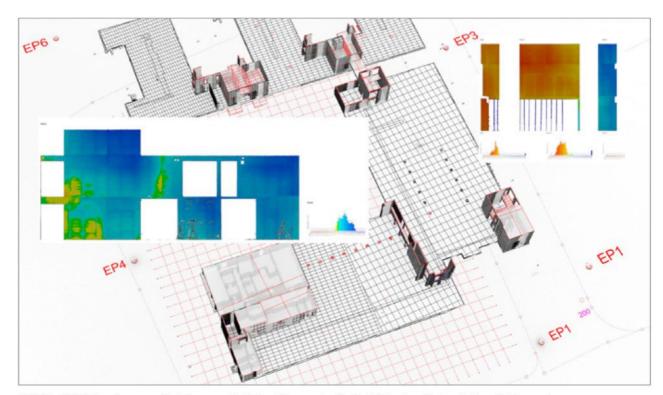
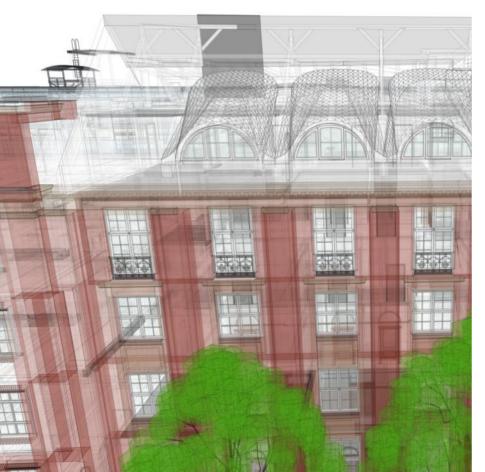
Holzbauplanung mit BIM-Fachplanungssoftware

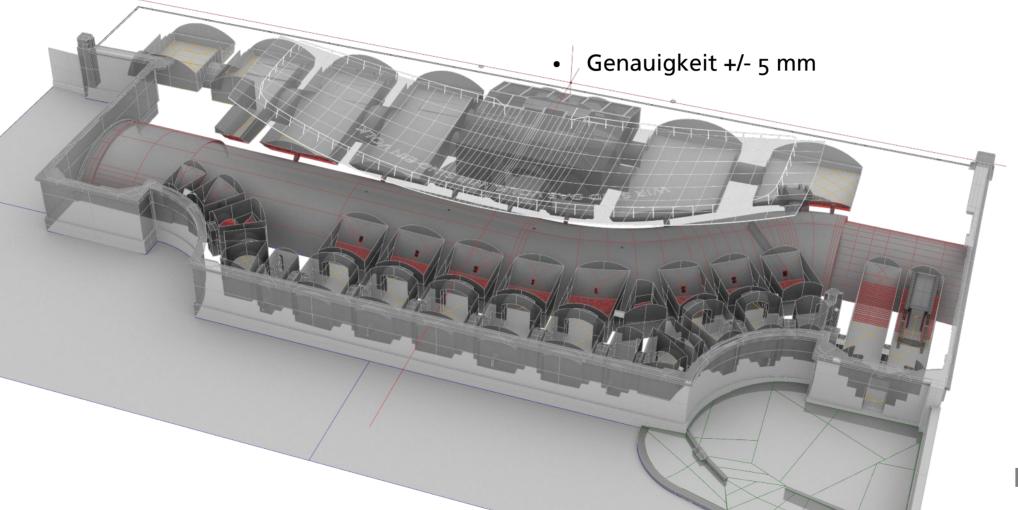
Statistik von Punkttests:

- Punkte insgesamt: 435645
- Durchschnittsabstand: 0.0011
- Mittelabstand: 0.00051
- Standardabweichung: 0.00315
- (Einheiten in m)

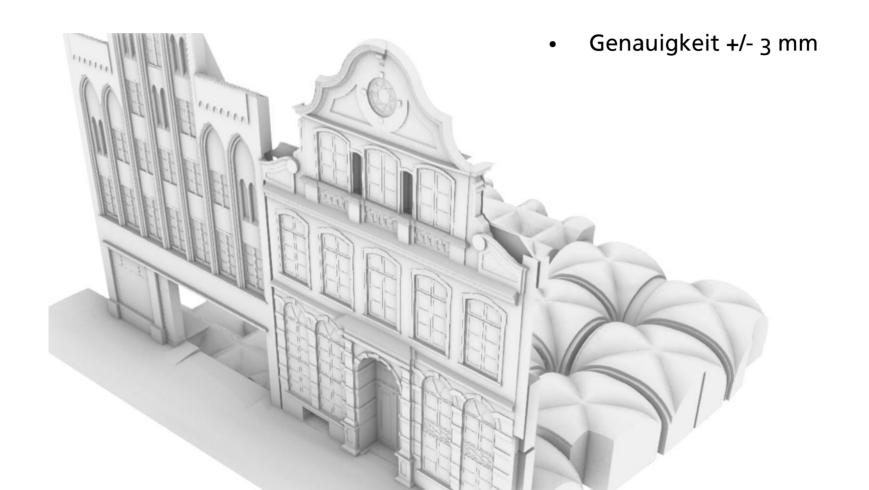
BEISPIEL Neubau der Gesamtschule Münster Ost

- Erreichte Genauigkeit
 - +/- 2 mm

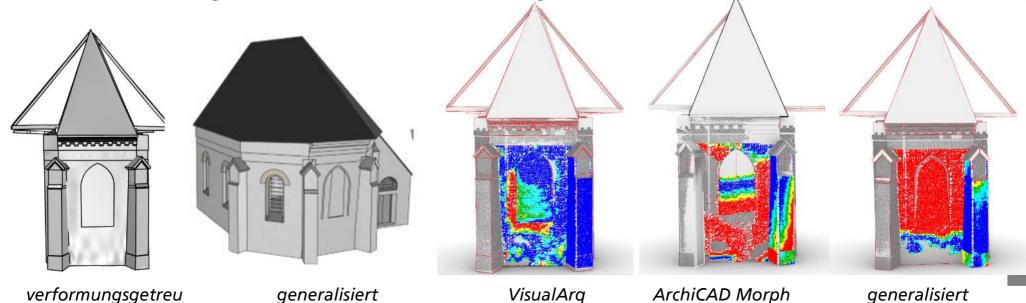




Bild 4: BIM-konformes Rohbaumodell der Gesamtschule Münster Ost mit Qualitätsanalyse

BEISPIEL Ehemalige Knorr Bremse Werke



BEISPIEL Freiheits und Einheitsdenkmal in Berlin


BEISPIEL Buddenbrookhaus in Lübeck

Wie lässt sich Qualität von 3D-Modellen beurteilen?

- Vergleich Punktwolke zu Modell
 - unter Berücksichtigung der Genauigkeit der Punktwolke
- Muss ich alles modellieren?

VORSCHLAG Reduzierung der Modellabbildung auf erforderliche Teilbereiche und Nutzung der Punktwolke für die Planung

Wie lässt sich der aktuelle Stand der Technik beurteilen?

- keine hinreichende Qualitätsbeschreibung der Bestandsmodelle für BIM
- LÖSUNGSANSATZ
 - Nutzung des generalisierten Modells
 - Nutzung der Punktwolken als verformungsgetreues Abbild
- Verformungstreue Bestandsmodelle
 - Freiformflächen mittels IFC nur eingeschränkt kompatibel in unterschiedlichen Plattformen
 - Hoher Aufwand in der Modellierung

VIELEN DANK!