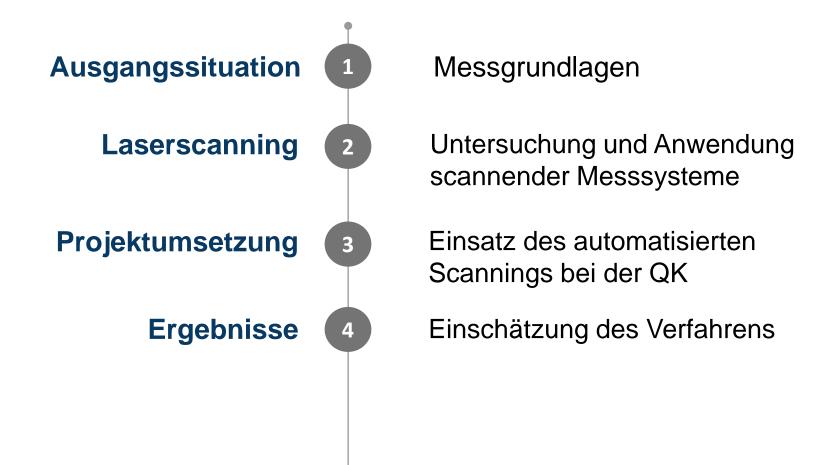


Präzises Laserscanning für die Qualitätskontrolle von Schienenfahrzeugen

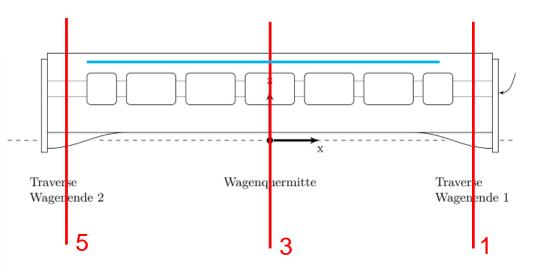
Prof. Dr.-Ing. Robin Ullrich | HTW Dresden BauScan2023 Magdeburg, 09.11.2023

Einordnung


Worum geht es (aus geodätischer Sicht)?

- Qualitätssicherung (Industrievermessung)
- Herstellervorgaben (u.a. DIN25043)
- komplexe Fahrzeuggeometrie abgebildet auf (wenige?) Messpunkte bzw. Messstellen
- ➤ Laufgüte, Fahrzeugbegrenzungsprofil, Entgleisungssicherheit
- > u.a. als Nachweise für Verkehrstauglichkeit

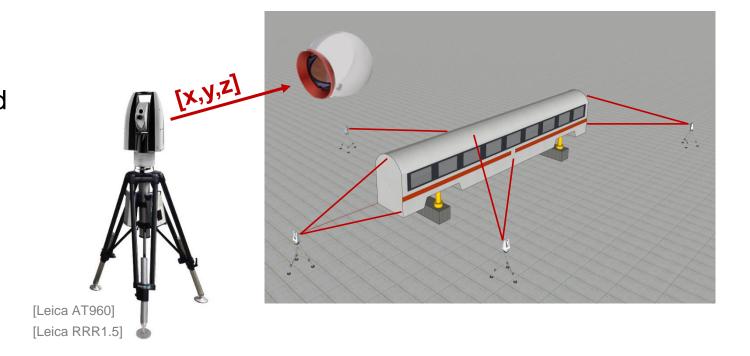
Agenda



Ausgangssituation

Messstellen (DIN25043)

Meß MV Nr.			Maße Nennmaß	in mm Grenzab- maß	Fahrzeug- seite	Istmaß bzw. Abweichungen zum Nennmaß an den bezeichneten Messstellen (Maße in mm) Segment/F ahrzeug 1 2 3 4 5					
2.3	Abstand Mitte der Pufferauflage zur Bezugsebene	z38	0	0,5 -0,5	R L	\nearrow	0,3	\nearrow	\nearrow	\nearrow	0,1
	Abstand der Auflageflächen für die Kraftübertragung Fahrwerk zur Bezugsebene (mit Beilagen)	z43	80		R L		\ge	0,3	\bigotimes	0,1	\nearrow
4.1	Parallelität der Auflageflächen quer (R-L)			0,5 -0,5	R L		\gtrsim	0,0	\nearrow	-0,3	\nearrow
	Parallelität der Auflageflächen quer (2-4)	z45	•		R L		\gtrsim		0,2		\bigotimes
4.2	Lageabweichung der Kraftübertragungselemente zum Fahrwerk in Längs- und Querrichtung mit Bezug zur Wagenlängsebene	x43	10850	3 -3	R L		\overline{X}	2,3 2,4	\nearrow	2,2	$\langle \rangle$
4.2		y43	1000	3 -3	R		\leq	-0,2 -0,2	\times	-0,2 -0,2	\bigotimes
8.1	Lage der Seitenwände gegenüber Wagenlängsmitte	y32	1500	10 -10	R L		1,2 6,1	6,7 6,5	3,3 6,7	4,3 6,6	3,7 5,9

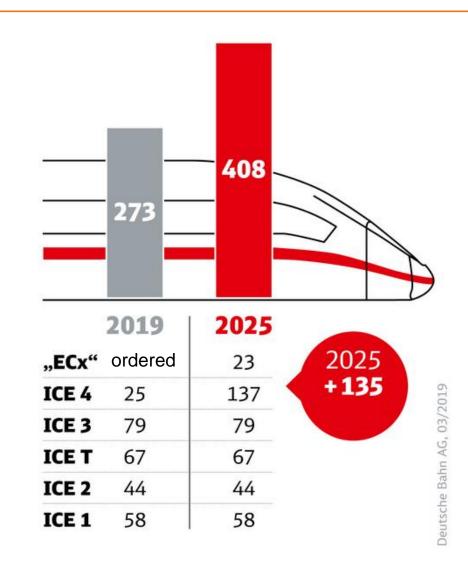


Ausgangssituation

Messstrategie

- 3 bis n Instrumentenstandpunkte
- Transformation durch Referenz- und Verknüpfungspunkte
- Ableitung von Dimensionen/Maße aus Koordinaten

Station 2 (Lasertracker)


Station 3 (Lasertracker)

[Messzeit]

Herausforderungen – ein Beispiel

- Wachstum der DB Inter-City Express (ICE) Flotte bis 2025
- In der Abb. nur Züge mit ICE-Standard gezeigt (ähnliche Tendenz für andere Kategorien)
- höhere Anzahl an Fahrzeugen nötig
- ➤ Aktuelle Messprozesse werden den höheren Anforderungen nicht gerecht
- Messprozess muss beschleunigt werden

Wehrere Lasertracker

Wehrere Lasertreiben

Instrumente

Wehrere

Gleichzei

Mehrere Messstandorte
Mehrere Messtrumente, EKM

Gleichzeitig betreiben

Gleichzeitig betreiben

Gewachsene Strumente, EKM

Gewachsene Strumente, EKM

Gersonal, Instrumente, EKM

Personal, Instrumente, EKM

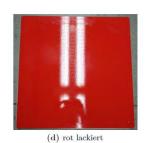
Personal, Instrumente, EKM

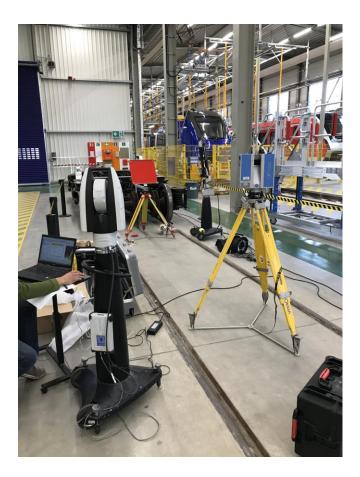
- Laserscanner für geringere Genauigkeitsansprüche
- Lasertracker für präzise Messung
- ➤ Höherer Bedarf an Instrumenten, aber das Personal bleibt identisch

Laserscanner -Limitierungen

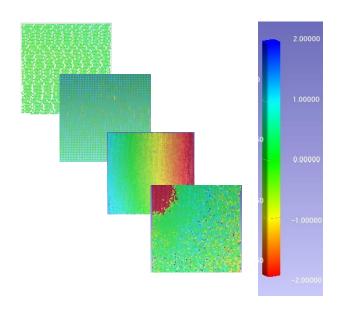
- ✓ Geräteparameter
- Material der Fahrzeuge
- Auftreffwinkel
- Genauigkeit der Scanner
- Definition der Messstellen
- Sichtbarkeiten
- Toleranzangaben (DIN25043, DIN18710)

Model	Hersteller	Einsatzbereich	Distanzgenauigkeit			
100HSX	Surphaser	1-35 m	<0,35 mm @ 15 m			
IMAGER 5016	Z+F	0,3-187 m	0,3 mm @ 15 m			
ATS600	Leica	1-60 m	<0,3 mm @ 15m			
VZ-400i	Riegl	0,5-120 m	5 mm @ 100 m			
VZ-200	Riegl	1,5-140 m	5 mm @ 100 m			
FOCUS S 70	FARO	0,6–70 m	0,3 mm @ 10 m			
Artec Ray	artec3d	<110 m	<0,7 mm @ 15 m			
GLS 2000	TOPCON	350 m	3,5 mm @ 1-150 m			
Polaris HD	Teledyne optech	1,5-250 m	5 mm @ 100 m			
TX 8	Trimble	0,6-120 m	<1 mm @ 2 m			
TX 6	Trimble	0,6-80 m	<2 mm @ 2 m-80 m			
RTC360	Leica	0,5-130 m	0,4 mm @ 10 m			
ScanStation P50	Leica	0.4-120 m	1,2 mm + 10 ppm (<120 m)			




Untersuchung der Scanner

- Testbleche in verschiedenen Winkel- und Distanzkombinationen
- Referenzebenen mit Lasertracker (Nester, Kinematik)



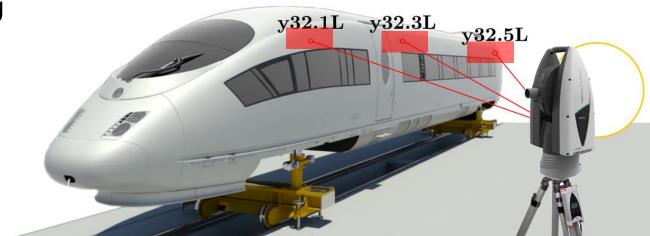
Untersuchungsergebnisse

- RMS der Scanpunktdifferenzen zur Referenzebene [mm]
- Normalenvektor auf Referenzebene

			Lei	ica ATS	8600	Surphaser 100HSX			Z+F 5016		
Hz	$\mathbf{V}_{\mathbf{Z}}$		4m	15m	30m	4m 15m 30m		4m	15m	30m	
		Rot	0,29	0,42	0,29	0,65	0,66	-	0,21	0,28	0,48
0_{\circ}	0_{o}	Weiss	0,32	0,46	0,46	0,59	1,33	-	0,54	0,70	0,39
		Stahl	0,28	0,15	0,16	9,57	1,11	-	X	-	X
		Rot	0,32	0,38	0,25	0,32	0,65	-	0,16	-	0,67
15°	0_{o}	Weiss	0,29	0,39	0,47	0,28	0,76	-	$0,\!52$	-	0,60
		Stahl	0,33	0,22	0,48	0,25	-	-	0,29	-	0,55
	0°	Rot	0,29	0,28	0,43	0,24	0,63	-	0,12	-	0,86
30°		Weiss	0,31	0,65	0,78	0,33	0,72	-	0,47	-	0,84
		Stahl	0,42	0,30	0,90	0,27	5,34	-	0,25	-	0,82
	0°	Rot	0,21	0,19	0,98	0,12	0,76	-	0,13	-	0,98
60°		Weiss	0,38	0,75	1,23	0,30	0,79	-	0,52	-	1,33
		Stahl	0,51	0,26	1,66	0,65	7,21	-	0,69	-	1,14
	15°	Rot	0,33	0,57	0,28	0,45	0,76	-	0,17	-	0,40
15°		Weiss	0,28	0,39	0,35	0,29	0,71	-	0,49	-	0,26
		Stahl	0,40	0,14	0,32	0,18	3,96	-	0,23	-	0,45
	30°	Rot	0,24	0,55	0,20	0,31	0,76	-	0,13	-	0,32
30°		Weiss	0,27	0,34	0,34	0,19	0,74	-	0,48	-	0,25
		Stahl	0,33	0,21	0,60	0,38	13,29	-	0,33	-	1,01
		Rot	0,22	0,27	0,81	0,11	0,85	-	0,14	0,23	0,70
60°	60°	Weiss	0,40	0,29	0,83	0,33	1,01	-	0,54	0,23	0,54
		Stahl	0,32	0,34	1,25	0,30	21,35	-	0,42	-	0,66

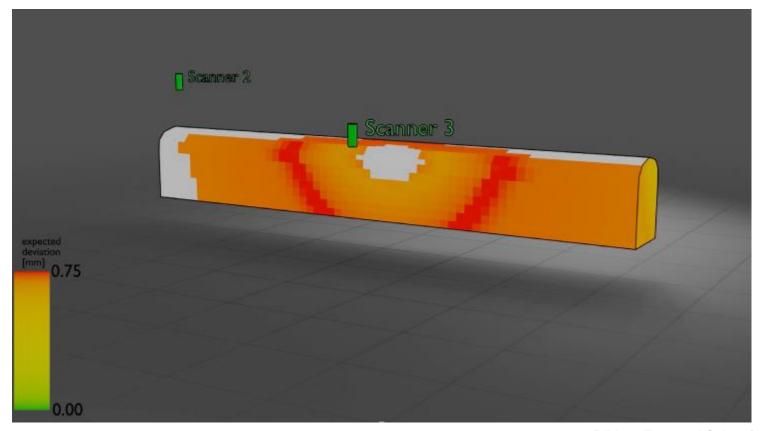
- keine Messung X Messung nicht erfolgreich

15m30m4mATS600 100 HSX


Instrument mit niedrigstem RMS Wert

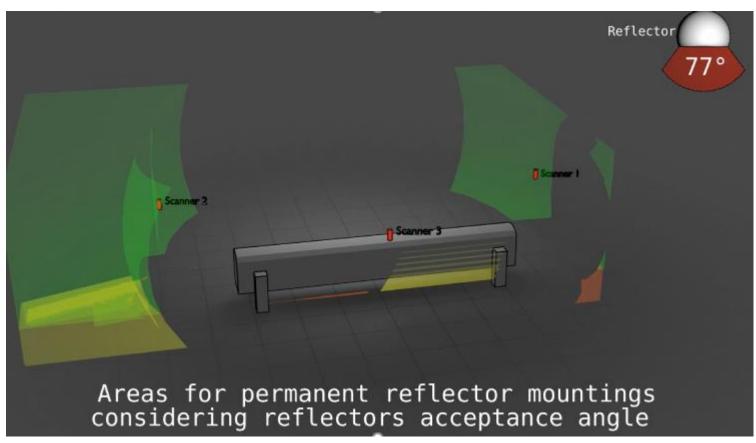
Leica ATS600

- "Lasertracker mit integrierter Scanningfunktion"
- ...d.h., die Nutzung von Reflektoren ist trotzdem möglich
- Vorteil einer selektiven Bereichsauswahl
- Besonders einfache Standpunktverknüpfung
- > Zeitersparnis/ Prozessierung
- ➤ Genügend Redundanz
- ightharpoonup Kenngrößen Leica ATS600 und Stationierung (Erweiterte Messunsicherheit $U_y = 0.7$ mm mit Stationierung)


		Lageabweichung der Kraftübertragungselemente zum Fahrwerk in Längs- und Querrichtung mit Bezug zur Wagenlängsebene		10850	3	-3	R	4
	4.2						L	
				1000	3	-3	R	
			y43				-	
	8.1	Lage der Seitenwände gegenüber Wagenlängsmitte	y32	1500	10	-10	R	
	0.1			1300		-10	L	
ľ								_

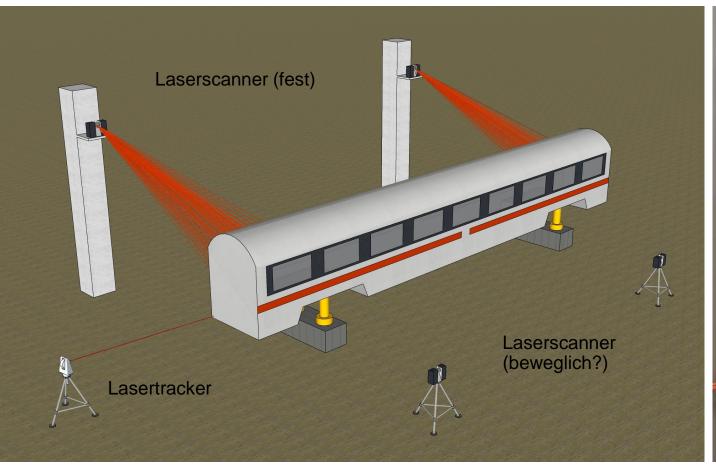
Standpunktsimulation mit Blender (Genauigkeit)

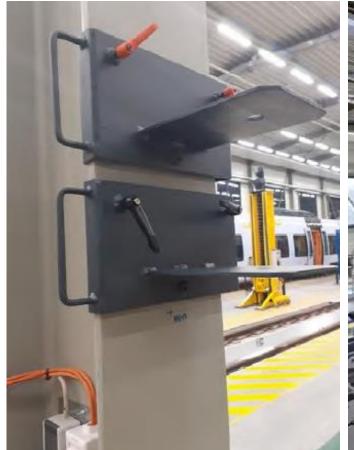
- Einfallwinkel bzw. Auftreffwinkel
- Messunsicherheit Instrument
- Sichtbehinderungen (Hallenlayout)
- Akzeptanzwinkel des Reflektors
- Möglichst hohe Genauigkeit der Scans
- > Iterativer Prozess



[Video: Emanuel Schütz]

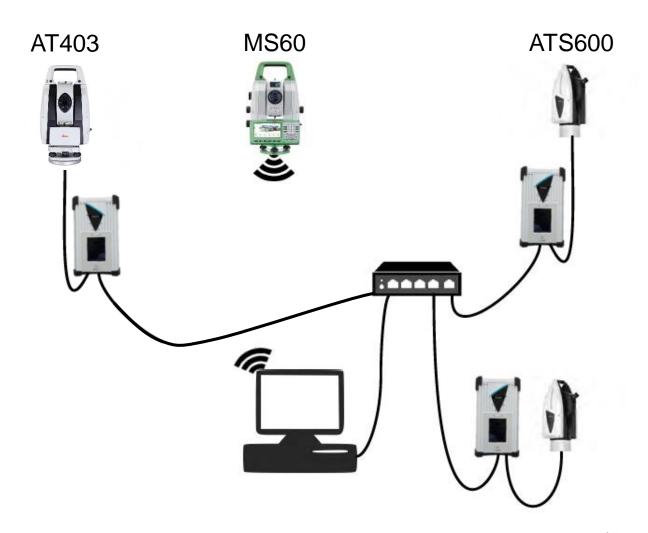
Standpunktsimulation mit Blender (Sichten)


- Einfallwinkel bzw. Auftreffwinkel
- Messunsicherheit Instrument
- Sichtbehinderungen (Hallenlayout)
- Akzeptanzwinkel des Reflektors
- Möglichst hohe Genauigkeit der Scans
- > Iterativer Prozess



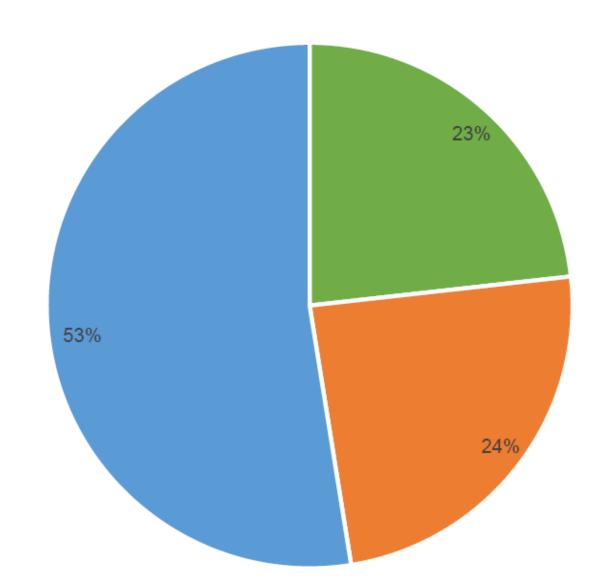
[Video: Emanuel Schütz]

Finales Messkonzept



Projektkonzept & Sensorvernetzung

- 2x Leica ATS600 für Scanning
- 1x Leica MS60 für Scanning
- 1x Leica AT403 für präzise Messungen
- SpatialAnalyzer (SA) als Basisapplikation
- Projekt-Software setzt auf Automatisierungsschnittstelle von SA auf



Ergebnisse

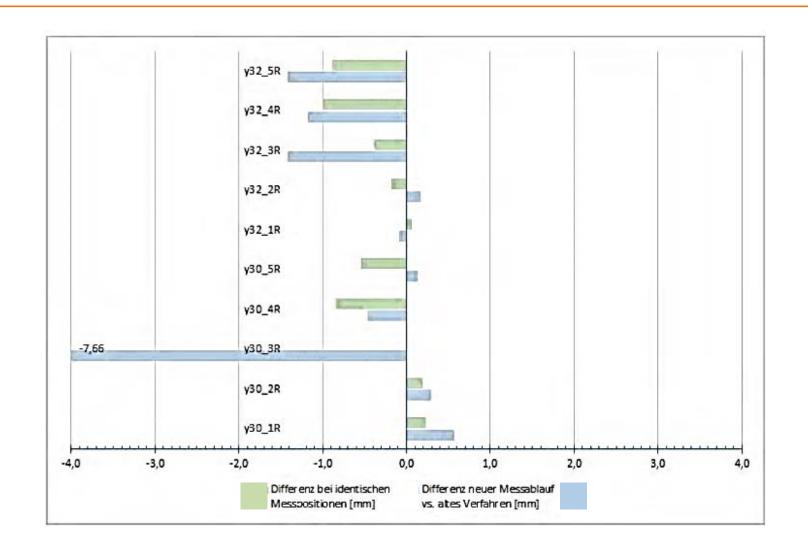
Vergleichsmessung ursprünglichen Messabla

- Anteil gescannter Messtellen bzgl. des Gesamtumfangs
- Blau: Reflektormessungen
- Grün: Scanning
- Orange: Scanning teilweise umsetzbar



Ergebnisse

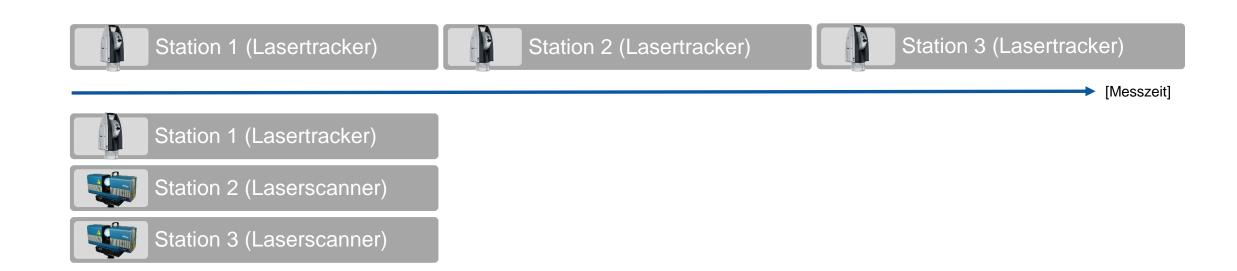
Vergleichsmessung ursprünglichen Messablauf


- Zeitlicher Ablauf (idealisierte Darstellung mit teilweise möglichen Bereichen)
- Realzeit ca. 1 Stunde mit ATS600

Ergebnisse

Vergleichsmessung ursprünglichen Messablauf

Zusammenfassung und Ausblick



Genauigkeit umsetzbar

Zeitersparnis bis zu 50% (Prognose)

Arbeitssicherheit (keine Absturzsicherungen für Dachmessungen)

Einsparung von Messadaptern (und deren Kalibrierung)

Dank & Fragen

aufgrund eines Beschlusses des Deutschen Bundestages

